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摘　要: 随机优化算法是机器学习中处理大规模数据和复杂模型的重要方法. 其中, 方差缩减方法 (如 STORM算

法)因其在随机非凸优化问题中能够实现最优的   收敛速率而受到广泛关注. 然而, 传统的方差缩减方法通

常需要依赖特定的问题参数 (如光滑系数、噪声方差和梯度上界)来设置学习率和动量, 使得它们在实际应用中难

以直接使用. 为了解决这一问题, 提出了一种基于归一化的自适应方差缩减方法, 该方法无需预先知道问题参数,
仍然能够实现最优的收敛速率. 与现有的自适应方差缩减方法相比, 所提方法具有以下显著优势: (1) 无需依赖额

外假设, 如梯度有界、函数值有界或极大的初始批量大小; (2) 实现了最优的    收敛速率, 不包含额外的

 项; (3)证明过程简洁明了, 便于推广到其他随机优化问题. 最后, 通过数值实验将该方法与其他方法进行

了对比, 验证了其优越性.
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Abstract:  Stochastic  optimization  algorithms  are  recognized  as  essential  for  addressing  large-scale  data  and  complex  models  in  machine
learning.  Among  these,  variance  reduction  methods,  such  as  the  STORM  algorithm,  have  gained  attention  for  their  ability  to  achieve
optimal  convergence  rates  of  .  However,  traditional  variance  reduction  methods  typically  depend  on  specific  problem  parameters
(e.g.,  the  smoothness  constant,  noise  variance,  and  gradient  upper  bound)  for  setting  the  learning  rate  and  momentum,  limiting  their
practical  applicability.  To  overcome  this  limitation,  this  study  proposes  an  adaptive  variance  reduction  method  based  on  a  normalization
technique,  which  eliminates  the  need  for  prior  knowledge  of  problem  parameters  while  maintaining  optimal  convergence  rates.  Compared
to  existing  adaptive  variance  reduction  methods,  the  proposed  approach  offers  several  advantages:  (1)  no  reliance  on  additional
assumptions,  such  as  bounded  gradients,  bounded  function  values,  or  excessively  large  initial  batch  sizes;  (2)  the  achievement  of  the
optimal  convergence  rate  of   without  extra  term  of  ;  (3)  a  concise  and  straightforward  proof,  facilitating  extensions  to
other  stochastic  optimization  problems.  The  superiority  of  the  proposed  method  is  further  validated  through  numerical  experiments,
demonstrating enhanced performance when compared to other approaches.
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如今, 随机优化已成为现代机器学习中不可或缺的重要工具, 因为它能够有效应对大规模数据和复杂机器学

习模型的挑战 [1]. 传统优化方法在处理高维海量数据时往往面临计算效率低下的问题, 而随机优化方法通过在每

次迭代中随机选择部分数据进行计算, 大幅降低了计算成本, 加快了模型训练速度, 并在常见的非凸问题中取得了

显著的优化效果.

f : Rd → R x ∈ Rd

f (x)

在经典的随机优化问题中 [2], 我们给定一个光滑的非凸函数  , 目标是找到一个解   使得目标函

数   的值尽可能小. 其数学形式表现为: 

min
x∈Rd

f (x) .

∇ f (·, ξ) ξ

E
[∇ f (·, ξ)] = ∇ f (·) x

ξ f (x, ξ) f

需要注意的是, 我们只能基于部分样本来计算该函数的梯度, 即获得  , 其中   代表某个样本或一个小批

量样本, 使得   . 随机优化问题在机器学习中广泛存在 [3 ,4]. 例如, 在监督学习中,   通常表示

模型的参数 (如神经网络的权重),   表示一个数据样本,   表示该样本的损失函数值,   表示模型的整体训练

损失.

f f

f ∇ f (x) = 0

x1, . . . , xT

由于通常不假设函数   具有凸性, 因此在一般情况下, 找到函数   的全局最小值可能是 NP 难的. 为此, 这类

问题通常被放宽为寻找函数   的一个驻点, 即满足   的点. 此外, 我们仅假设可以访问任意点处的随机梯

度 (即一阶信息), 而不使用黑塞矩阵等高阶信息. 在这种情况下, 最常用的方法是随机梯度下降法 (stochastic
gradient descent, SGD). SGD算法通过以下递归公式生成一系列迭代点  : 

xt+1 = xt −ηt∇ f (xt, ξt),

ξt ηt t ηt

xT E
[||∇ f (xT ) ||] ⩽ O

(
T −1/4) T

其中,   是从数据分布中独立采样的样本, 而   表示第   轮迭代的学习率. 当学习率   选择得当时, SGD算法能够

保证最终的迭代点   满足  , 其中   表示迭代轮数 [5].

O
(
T −1/4) O

(
T −1/3)

∇ f (xt, ξt)

t = 0 v0 = ∇ f (x0, ξ0)

t ⩾ 1 vt

近年来, 为了进一步提升随机非凸优化问题中算法的收敛速率, 一类基于方差缩减的方法 [6,7]被提出, 将收敛

速度从传统 SGD算法的   进一步提升至  . 与 SGD算法不同, 方差缩减方法在每一步并非直接使用

随机梯度    进行更新, 而是采用一个方差缩减估计器来追踪函数的梯度, 并基于该估计器更新变量. 以
STORM (stochastic recursive momentum)算法 [8]为例, 在初始迭代时 ( ), 算法首先令  . 在随后的迭

代中 ( ), 算法构建梯度估计器  : 

vt = (1−βt)vt−1+βt∇ f (xt;ξt)+ (1−βt) (∇ f (xt;ξt)−∇ f (xt−1;ξt)) .

ηt βt vt E
[||vt −∇ f (xt) ||

]
xt+1 = xt −ηtvt

O
(
T −1/3) ηt βt

这种构建方法确保在合理设置学习率   和动量参数   的前提下,   的估计误差   能够随时间逐

步减小. 在获得梯度估计器后, STORM方法采用类似于 SGD算法的方式进行变量更新, 即  . 然而, 为
了实现最优的   收敛速率, STORM方法必须谨慎设置学习率   和动量参数  , 具体如下所示: 

ηt =
kw+ t∑

i=1

||∇ f (xt;ξt)||2
1/3
, βt = cη2

t ,

k = O
(
G2/3L−1) , w = O

(
G2) , c = O

(
L2) G f L f

G L

G L

其中,  , 且   为函数   的梯度上界,   为函数   的光滑系数. 换言之, 学习率依

赖于一系列问题参数和历史随机梯度的累计和. 在这种情况下, 算法需要事先知道问题参数   和  , 才能正确设置

学习率与动量参数, 从而获得最优的收敛速率. 然而, 在实际应用中, 我们很难准确知道参数   和   的值, 这使得算

法在实际场景中难以应用.

O
(
T −1/3logT

)
O
(
T −1/3)

O
(
T −1/3)

为了解决上述问题, 研究者们对自适应方差缩减算法进行了深入研究 [9−11], 旨在无需预先知晓问题参数的情

况下, 自适应地自动调整学习率和动量参数, 同时仍然能够获得相应的收敛速率保障. 然而, 当前方法仍然存在一

些局限: (1) 这些方法通常依赖额外的假设, 例如梯度有界、函数有界、较大的初始批量大小; (2) 它们只能获得

 的收敛速率, 无法匹配最优的   收敛保障; (3)方法的证明过程极为复杂, 需要分两个阶段分别

对多项因子进行缩放, 不利于推广到其他随机优化问题. 为此, 本文基于归一化思想, 提出了一种全新的自适应方

差缩减算法, 通过简单直接的证明技术, 在无需引入额外假设的情况下, 该方法能够实现最优的   收敛速率,
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并在数值实验中证明了其优越性.
本文的主要贡献如下.
(1) 提出了一种新颖的基于归一化的自适应方差缩减算法, 该算法能够自适应地调整超参数, 且学习率和动量

参数仅依赖于迭代次数, 方法简单且易于实现.

O
(
T −1/3)(2) 在无需引入额外假设 (如梯度有界、函数值有界、极大初始批量大小)的情况下, 本文证明了所提出算法

能够实现最优的    收敛速率, 并且其结果能够与理论下界相匹配. 在表 1 中我们对比了本文所提出的

NAVAR (normalized adaptive variance reduction)方法与现有方差缩减算法间的差异.
 
 

表 1　不同方差缩减算法的对比
 

方法 收敛速率 是否自适应 额外假设

STORM[8] O
(
T−1/3logT

)
否 梯度有界, 函数值有界

STORM+[9] O
(
T−1/3

)
是 梯度有界, 函数值有界

META-STORM[10] O
(
T−1/3logT

)
是 梯度有界

Ada-STORM[11] O
(
T−1/3

)
是 极大初始批量大小

NAVAR (本文) O
(
T−1/3

)
是 无

 

(3) 通过数值实验验证了所提算法的有效性. 实验结果表明, 该算法能够在自适应调整超参数的同时取得较快

的收敛速率, 优于其他相关算法.
本文第 1节介绍方差缩减相关方法及其自适应技术的研究现状. 第 2节阐述了方差缩减问题中所采用的基本

假设. 第 3节则详细介绍了本文提出的基于归一化的自适应方差缩减方法. 第 4节给出了所提出算法的理论分析

和证明过程. 第 5节通过对比实验验证了所提出方法的有效性. 第 6节对全文进行了总结. 

1   相关工作

本节将简要介绍方差缩减方法和自适应算法的相关研究进展. 

1.1   方差缩减方法

方差缩减算法在随机优化问题中得到了广泛应用, 该方法旨在通过减少梯度估计的误差, 显著提升算法的收

敛速度. 方差缩减的概念最早可以追溯到 Roux等人 [12]提出的 SAG (stochastic average gradient)算法, 该算法通过

累积先前的梯度值来实现方差缩减效应, 并在强凸有限和优化问题中实现了线性收敛. 为了解决需要存储历史梯

度的限制, Johnson等人 [13]和 Zhang等人 [14]提出了 SVRG (stochastic variance reduced gradient)方法, 该方法通过周

期性地计算全批量梯度, 达到了与 SAG 算法相同的收敛速度. 随后, Nguyen 等人 [15]提出了 SARAH (stochastic
recursive gradient algorithm)方法, 进一步提高了光滑凸函数的收敛速率.

O
(
T −1/4) O

(
T −1/3) O

(
n1/4T −1/2)

n

O
(
T −1/3logT

)

在非凸优化领域, Fang等人 [6]提出 SPIDER (stochastic path-integrated differential estimator)估计器, 将随机非

凸环境下的收敛率从 SGD算法的   提升到  , 并在有限和场景下将收敛率进一步提升至  ,
其中,   代表有限和问题中的函数数量. 接着, Wang 等人 [7]提出的 SpiderBoost 和 Prox-SpiderBoost 算法对

SPIDER 方法进行了优化, 采用了更大的常数步长, 并将其应用于复合优化问题. 然而, 这些方法的共同缺点是依

赖于大批量样本, 导致在实际应用中计算需求极高. 为解决这一问题, Cutkosky 等人 [8]随后提出了基于动量的

STORM方法, 该方法能够在不依赖大批量样本的情况下, 实现   的收敛速率. 

1.2   自适应算法

O
(
T −1/4)在随机非凸优化问题中, Ghadimi 等人 [5]证明了通过合理设计学习率, SGD 算法能够实现   的收敛速

率. 不同于该研究中基于迭代次数设定的学习率, 后续研究提出了许多基于历史随机梯度动态调整学习率的方法.
例如, Duchi 等人 [16]提出的 AdaGrad 算法, 通过累计历史梯度来设定学习率, 在处理稀疏数据时表现优异. 随后,
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O
(
T −1/3logT

)
Tieleman等人 [17]提出的 RMSprop算法和 Kingma等人 [2]提出的 Adam算法, 也采用了动态调整学习率的策略, 并
在各种机器学习问题中取得了显著的效果. Huang等人 [18]则进一步结合 STORM的方差缩减技术, 对 Adam算法

进行了改进, 提出了 Super-Adam算法, 并获得了   的收敛速率. 然而, 这些方法仍然需要预先知道某些

问题参数, 才能准确设置学习率和动量参数, 因此它们并非完全自适应的算法. 为此, 许多研究 [19−23]致力于开发完

全自适应的 SGD方法, 以在不知晓具体问题参数的情况下, 仍能保持类似的收敛速率.

O
(
logT
)

O
(
T −1/3)

近年来, 自适应方差缩减方法在随机优化领域得到了广泛关注. 其中的一个重要进展是 Levy 等人 [9]引入的

STORM+ (stochastic recursive momentum +)方法, 该方法是 STORM算法的一个自适应版本, 能够实现最优的收敛

速率. 然而, STORM+方法依赖于梯度有界和函数值有界的假设. 为了解决这一限制, Liu 等人 [10]提出了 META-
STORM-SG和META-STORM方法, 去除了对函数值有界的依赖, 并证明了相似的收敛速率. 然而, 这两种方法仍

然需要梯度有界的假设, 并且其收敛速率中包含了额外的   项, 未能达到最优收敛速率. 最近, Jiang等人 [11]

提出了 Ada-STORM (adaptive stochastic recursive momentum) 方法, 进一步去除了梯度有界的假设, 并实现了

 的收敛速率. 但是, 该方法在首轮迭代中需要使用极大的批量样本, 且证明过程非常复杂, 需分两阶段对

多个因子分别进行约束, 这限制了其在其他随机优化问题中的推广应用. 

2   基本假设

本文研究随机非凸优化问题, 下面介绍该问题所需的基本假设.

f假设 1. 平均光滑性. 函数   的梯度随机采样满足平均光滑性, 即: 

E
[
||∇ f (x;ξ)−∇ f (y;ξ)||2

]
⩽ L2||x− y||2.

f假设 2. 误差有上界. 函数   的梯度随机采样是对真实梯度的无偏估计, 且误差具有上界, 即: 

E
[∇ f (x;ξ)

]
= ∇ f (x)且E

[
||∇ f (x;ξ)−∇ f (x) ||2

]
⩽ σ2.

f∗ = inf
x

f (x) ⩾ −∞ f (x1)− f∗ ⩽ ∆ f x1假设 3. 初始误差.  并且  , 其中   为初始点.

O
(
T −1/3)

O
(
T −1/3)

假设 1 是方差缩减算法的核心假设, 也是实现   收敛率的关键. 假设 2 确保了梯度采样是无偏的且其

误差是有限的, 而假设 3则刻画了初始点处的误差大小. 基于上述 3个假设, 现有的方差缩减方法 [6,8,15,24]能够获得

最优的   收敛速率, 这也是本文采用的全部假设. 此外, 为了确保假设 2中随机梯度是无偏估计的性质, 通

常需要采用放回采样的方式. 当前也有文献 [25]对不放回采样进行了研究, 但其仅能在有限和问题中获得理论保

障, 无法分析本文所考虑的随机优化问题.
值得注意的是, 现有的自适应方差缩减方法通常还需要额外假设梯度有界和函数值有限, 具体如下.

f ||∇ f (x;ξ)|| ⩽G假设 4. 梯度有界. 函数   的梯度随机采样具有上界, 即  .

f maxx,y∈Rd | f ( x)− f (y )| ⩽ B假设 5. 函数值有上界. 函数   的函数值具有上界, 即  .

Levy等人 [9]提出的方法依赖于假设 4和假设 5, Liu等人 [10]提出的算法则需要假设 4, 而 Jiang等人 [11]提出的

方法需要假设在初始轮使用极大的批量大小. 此外, 原始的 STORM 方法也依赖于假设 4. 与此不同的是, 本文的

方法不依赖假设 4或假设 5. 

3   基于归一化的自适应方差缩减算法

vt t = 0 v0 = ∇ f (x0, ξ0)

t ⩾ 1 vt

本节介绍我们提出的自适应方差缩减算法. 与先前的自适应算法类似, 我们基于方差缩减算法 STORM进行

设计. 具体而言, 其核心在于构建方差缩减的梯度估计器  , 在第 1轮迭代时 (即  ), 令  . 在随后的

迭代过程中 (即  ), 梯度估计器   构建为: 

vt = (1−βt)vt−1+βt∇ f (xt;ξt)+ (1−βt) (∇ f (xt;ξt)−∇ f (xt−1;ξt)) ,

βt (1−βt)vt−1+βt∇ f (xt;ξt)

(1−βt) (∇ f (xt;ξt)−∇ f (xt−1;ξt))

其中,   为动量参数. 在该表达式中, 前两项   是传统动量法的更新方式, 而额外引入的第 3
项   起到了误差校正的作用, 是利用方差缩减提升收敛速率的关键. 与以往基于 STORM
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xt+1 = xt −ηtvt,的其他方法不同, 在更新梯度时, 我们的方法并非直接采用类似于 SGD的更新方式   而是结合了归一

化的思想, 进行如下的变量更新: 

xt+1 = xt −ηt
vt

||vt ||
,

ηt ||vt || = 0 vt/||vt || = 0 xt

βt ηt ηt =

βt = T −2/3

其中,   为学习率. 当   时, 我们定义  , 即此时参数   不会进行更新. 此外, 不同于先前方法需要将

学习率及动量参数依赖于历史随机梯度的累积, 我们的方法无需对超参数   与   进行复杂设计, 只需设置 

 即可获得最优的理论保障. 我们将所提出的算法命名为 NAVAR (normalized adaptive variance reduction)
方法, 其伪代码如算法 1所示.

算法 1. NAVAR算法.

T输入: 回合数  ;
xτ输出: 最终结果  .

t = 0 T −11. for   to   do
ηt = βt = γ = T −2/32.　设置  ;

t = 03.　if   then
v0 = ∇ f (x0, ξ0)4.　　计算  ;

5.　else
vt = (1−βt)vt−1+βt∇ f (xt;ξt)+ (1−βt) (∇ f (xt;ξt)−∇ f (xt−1;ξt))6.　　计算  ;

xt+1 = xt −ηt
vt

||vt ||
;7.　更新 

8.　end if
9. end for

{1,2, . . . ,T } τ10. 从集合   中采样  ;
xτ11. return  ;

O
(
T −1/3)

T

K k

2k−1

在第 4节中, 我们将证明所提出的算法 1能够实现最优的   收敛速率. 然而, 虽然算法 1不再依赖问题

参数来设置学习率与动量参数, 但这些超参数的设置仍然需要预先知道总的迭代次数  . 为此, 我们可以通过构建

一个分阶段算法来避免此限制. 具体而言, 我们假设算法具有   个阶段, 对于第   个阶段, 我们设置该阶段的迭代

次数为  , 并在完成迭代后进入下一个阶段, 同时将迭代次数翻倍并重置优化变量.
t 1+ ⌊logt⌋

Tt = 2⌊logt⌋ ηt = βt = Tt
−2/3

T

在超参数设置方面, 对于每个时间步  , 我们首先确认其所在阶段为第   个阶段, 从而确定该阶段的迭

代次数为  . 最后, 根据该迭代次数, 我们能够确定此时的学习率和动量参数为  . 通过这样的

方式, 我们无需事先确定迭代次数   的大小. 同时, 学习率和动量参数不再在整个优化过程中维持不变, 而是会随

着阶段数的增加而逐步下降. 在第 4节中, 我们将给出该分阶段算法的理论保障. 

4   理论分析

vt接下来, 我们对算法 1进行理论分析. 方差缩减算法的核心在于确保梯度估计器   的估计误差随时间逐步降

低, 这一性质可以通过引理 1来描述.
vt t ⩾ 1引理 1. 算法 1中的梯度估计器   满足如下性质: 当   时, 有: 

E
[||vt −∇ f (xt) ||

]
⩽ (1−γ)tσ+ (σ+L)

√
γ.

vt βt = γ t ⩾ 1证明: 首先, 根据梯度估计器   的定义以及  , 当   时, 我们有: 

vt −∇ f (xt) = (1−γ)vt−1+γ∇ f (xt;ξt)+ (1−γ) (∇ f (xt;ξt)−∇ f (xt−1;ξt))−∇ f (xt)

= (1−γ) (vt−1−∇ f (xt−1))+γ (∇ f (xt;ξt)−∇ f (xt))+ (1−γ) (∇ f (xt;ξt)−∇ f (xt−1;ξt)−∇ f (xt)+∇ f (xt−1)) .
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将上述公式进行进一步迭代, 我们可以得到: 

vt −∇ f (xt) = (1−γ)t (v0−∇ f (x0))+γ
∑t

i=1
(1−γ)t−i (∇ f (xi;ξi)−∇ f (xi))

+
∑t

i=1
(1−γ)t+1−i(∇ f (xi;ξi)−∇ f (xi−1;ξi)+∇ f (xi−1)−∇ f (xi)).

l2对等式两边同时取   范数并取期望, 上式变为: 

E
[||vt −∇ f (xt) ||

]
⩽ (1−γ)tE

[||v0−∇ f (x0) ||]+γE [∥∥∥∥∑t

i=1
(1−γ)t−i(∇ f (xi;ξi)−∇ f (xi ))

∥∥∥∥]
+E
[∥∥∥∥∑t

i=1
(1−γ)t+1−i(∇ f (xi;ξi)−∇ f (xi−1;ξi)+∇ f (xi−1)−∇ f (xi ))

∥∥∥∥] .
X (EX)2 ⩽ E

[
X2] EX ⩽

√
E [X2]因为对于任意随机变量  , 满足不等式  , 即  , 所以上式可写作公式 (1):

 

E
[||vt −∇ f (xt) ||

]
⩽ (1−γ)tE

[||v0−∇ f (x0) ||]+γ√E [∥∥∥∥∑t

i=1
(1−γ)t−i (∇ f (xi;ξi)−∇ f (xi))

∥∥∥∥2]

+

√
E
[∥∥∥∥∑t

i=1
(1−γ)t+1−i (∇ f (xi;ξi)−∇ f (xi−1;ξi)+∇ f (xi−1)−∇ f (xi))

∥∥∥∥2] (1)

E
[∑t

i=1
(1−γ)t−i(∇ f (xi;ξi)−∇ f (xi ))

]
= 0由于  , 我们可得公式 (2):

 

E
[∥∥∥∥∑t

i=1
(1−γ)t−i (∇ f (xi;ξi)−∇ f (xi))

∥∥∥∥2] = E [∑t

i=1
(1−γ)2(t−i)(∇ f (xi;ξi)−∇ f (xi))

2
]

⩽ σ2
∑t

i=1
(1−γ)2(t−i) ⩽

σ2

1− (1−γ)2 ⩽
σ2

γ
(2)

E
[∑t

i=1
(1−γ)t+1−i(∇ f (xi;ξi)−∇ f (xi−1;ξi)+∇ f (xi−1)−∇ f (xi ))

]
= 0同理, 因为  , 我们有公式 (3):

 

E
[∥∥∥∥∑t

i=1
(1−γ)t+1−i(∇ f (xi;ξi)−∇ f (xi−1;ξi)+∇ f (xi−1)−∇ f (xi ))

∥∥∥∥2]
= E
[∑t

i=1
(1−γ)2(t+1−i)(∇ f (xi;ξi)−∇ f (xi−1;ξi)+∇ f (xi−1)−∇ f (xi))2

]
⩽ E
[∑t

i=1
(1−γ)2(t+1−i)(∇ f (xi;ξi)−∇ f (xi−1;ξi))2

]
⩽
∑t

i=1
(1−γ)2(t+1−i)L2(xi− xi−1)2

= L2γ2
∑t

i=1
(1−γ)2(t+1−i) ⩽ L2γ2 1

1− (1−γ)2 ⩽ L2γ2 1
γ
= L2γ (3)

其中, 公式 (1)成立是因为: 

E

 t∑
i=1

(1−γ)2(t+1−i)(∇ f (xi;ξi)−∇ f (xi−1;ξi)+∇ f (xi−1)−∇ f (xi))
2


⩽ E

 t∑
i=1

(1−γ)2(t+1−i)((∇ f (xi;ξi)−∇ f (xi−1;ξi))
2
+2 ⟨∇ f (xi;ξi)−∇ f (xi−1;ξi),∇ f (xi−1)−∇ f (xi)⟩+ (∇ f (xi−1)−∇ f (xi))

2)


⩽ E

 t∑
i=1

(1−γ)2(t+1−i)((∇ f (xi;ξi)−∇ f (xi−1;ξi))
2− (∇ f (xi−1)−∇ f (xi))

2)


⩽ E

 t∑
i=1

(1−γ)2(t+1−i)(∇ f (xi;ξi)−∇ f (xi−1;ξi))
2

 .
将公式 (2)和公式 (3)代入公式 (1)中, 最终得出结果: 

E
[||vt −∇ f (xt) ||

]
⩽ (1−γ)tE

[||v0−∇ f (x0) ||]+γ√σ2

γ
+
√

L2γ ⩽ (1−γ)tσ+ (σ+L)
√
γ.
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证毕.

f xt

根据引理 1, 我们可以得知, 梯度估计器的估计误差会随时间逐渐减少, 表现出方差缩减的特性. 接着, 根据函

数   的光滑性以及变量   的更新方式, 我们可以得出以下引理.
xt引理 2. 对于每一步迭代结果  , 其满足: 

||∇ f (xt) || ⩽
1
γ

( f (xt)− f (xt+1))+2||∇ f (xt)− vt ||+
γL
2
.

f证明: 首先, 因为函数   是 L-光滑的 (根据假设 1), 我们有: 

f (xt+1) ⩽ f (xt)+ ⟨∇ f (xt) , xt+1− xt⟩+
L
2
||xt+1− xt ||2.

xt+1 = xt −ηt
vt

||vt ||
ηt = γ由于算法的迭代方式为  , 且学习率  , 代入后上式可进一步简化为:

 

f (xt+1) ⩽ f (xt)+
⟨
∇ f (xt) ,−γ

vt

||vt ||

⟩
+

L
2
γ2.

γ

⟨
vt,−

vt

||vt ||

⟩
通过在不等式右侧拆分出   项, 上式可推出:

 

f (xt+1) ⩽ f (xt)+
⟨
∇ f (xt)− vt,−γ

vt

||vt ||

⟩
+γ

⟨
vt,−

vt

||vt ||

⟩
+

L
2
γ2 ⩽ f (xt)+γ||∇ f (xt)− vt || −γ||vt ||+

L
2
γ2.

γ通过移项并将不等式两边同时除以正的常数  , 我们得出: 

||vt || ⩽
1
γ

( f (xt)− f (xt+1))+ ||∇ f (xt)− vt ||+
γL
2
.

||∇ f (xt) || ⩽ ||∇ f (xt)− vt ||+ ||vt ||最后, 由于  , 我们能够完成最终的证明: 

||∇ f (xt) || ⩽ ||∇ f (xt)− vt ||+ ||vt || ⩽
1
γ

( f (xt)− f (xt+1))+2||∇ f (xt)− vt ||+
γL
2
.

证毕.
根据引理 1和引理 2, 我们可以得出以下定理.

xτ定理 1. 对于算法 1的最终结果  , 其满足: 

E
[||∇ f (xτ) ||

]
⩽ E
[

1
T

∑T

t=1
||∇ f (xt) ||

]
⩽
∆ f +4σ+3L

T 1/3
.

证明: 首先, 根据引理 2, 求和得到: 

E
[∑T

t=1
||∇ f (xt) ||

]
⩽ E
[
1
γ

( f (x1)− f (xT+1))+2
∑T

t=1
||∇ f (xt)− vt ||+

γLT
2

]
.

T γ = T −2/3将上述不等式两边同时除以正数  , 并根据引理 1以及  , 可以得到 

E

[
1
T

∑T

t=1
||∇ f (xt) ||

]
⩽ E
[

1
γT

( f (x1)− f (xT+1))+
2
T

∑T

t=1
||∇ f (xt)− vt ||+

γL
2

]

⩽
1
γT

( f (x1)− f∗)+
2
T

∑T

t=1
(1−γ)tσ+

2
T

∑T

t=1
(σ+L)

√
γ+
γL
2

⩽
∆ f

γT
+

2σ
γT
+2(σ+L)

√
γ+
γL
2
=
∆ f

T 1/3
+

2σ
T 1/3
+

2(σ+L)
T 1/3

+
L

2T 2/3

=
∆ f +4σ+2L

T 1/3
+

L
2T 2/3

⩽
∆ f +4σ+3L

T 1/3
.

τ {1,2, . . . ,T }最后, 由于   是从集合   中随机采样得到的, 我们可知: 

E
[||∇ f (xτ) ||

]
⩽ E
[

1
T

∑T

t=1
||∇ f (xt) ||

]
⩽
∆ f +4σ+3L

T 1/3
.
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证毕.

O
(
T −1/3)

O
(
logT
)

根据定理 1, 我们可以得知, 本文提出的算法 1具有   的最优收敛速率. 与先前的方法相比, 算法 1不依

赖于梯度有界和函数值有界的假设 (即假设 4 和假设 5), 也不需要在初始轮次中使用极大的批量大小. 所获得的

收敛速率不包含额外的   项, 能够匹配随机非凸优化的最优理论下界.

T虽然算法 1能够获得最优的理论保障, 但其仍然需要事先知道迭代次数  . 为了解决这一问题, 我们在第 3节
中引入了分阶段算法. 接下来我们给出该算法的收敛保障.

x̄ T定理 2. 对于分阶段算法的输出结果  , 若最终的总迭代轮数为  , 则其满足: 

E
[||∇ f (x̄) ||] ⩽ 41/3 (∆ f +4σ+3L

)
T 1/3

.

S K证明: 设算法的最后一个完整阶段为第   个阶段. 因为前   个阶段的总迭代次数满足不等式: 

20+21+ . . .+2K−1 < 2K .

T logT k 2k−1

2logT−1 = T/2 S = ⌊logT ⌋ T/4

T

所以, 经过   次迭代后, 算法至少经历了   个阶段. 因为第   个阶段的迭代次数为  , 所以最后一个阶段

的迭代次数为  . 考虑到我们只采用完整阶段的输出结果, 即  , 该阶段的迭代次数至少为  .
根据定理 1可知, 经过   次迭代后, 算法的输出结果满足: 

E
[||∇ f (xτ) ||

]
⩽
∆ f +4σ+3L

T 1/3
.

T/4于是, 当迭代次数为   时, 我们可以确保 

E
[||∇ f (x̄) ||] ⩽ ∆ f +4σ+3L

(T/4)1/3 =
41/3 (∆ f +4σ+3L

)
T 1/3

.

证毕.

T

O
(
T −1/3)根据定理 2可知, 在无需预先确定迭代次数   的情况下, 通过分阶段算法逐步加倍迭代次数的设计, 我们仍然

能获得最优的   收敛速率. 与算法 1中学习率与动量参数保持不变不同, 在这种情况下, 学习率和动量参数

将随着阶段数的增加逐阶段下降. 

5   实验分析

在本节中, 通过数值实验验证所提出方法的有效性. 我们在图像多分类任务和语言模型训练任务上进行实验,
并与相关的优化算法进行对比. 具体而言, 首先对比了常用的 SGD算法 [5]、Adam算法 [2]和 AdaBelief算法 [26]. 随
后对比了方差缩减算法 STORM[8]及其自适应变体, 包括 STORM+[9]、META-STORM[10]和 Ada-STORM[11]. 在超参

数设置方面, 首先参考了各方法原始论文中的推荐值, 然后进一步尝试对学习率进行搜索. 具体来说, 在集合

{1E–5, 1E–4, 1E–3, 1E–2, 1E–1}中进行了尝试, 并选择了表现最佳的结果进行汇报. 所有方法均在 PyTorch框架 [27]

下实现, 实验在一台配备 8卡 NVIDIA Tesla V100 GPU的机器上完成. 为了确保结果的稳定性, 所有实验均运行

多次, 并取平均值进行汇报. 

5.1   图像多分类问题

首先, 我们在公开的图像多分类数据集 CIFAR-10和 CIFAR-100[28]上进行了实验验证. 在 CIFAR-10数据集上

训练了 ResNet-18网络 [29]. 该数据集包含 10个类别的 60 000张 32×32彩色图像, 其中 50 000张用于训练, 10 000
张用于测试. 对于所有优化算法, 将批量大小设置为 256, 并训练了 200个周期 (epoch). 在结果方面, 分别绘制了模

型的训练损失 (training loss)、训练准确率 (training accuracy)、测试损失 (testing loss)、测试准确率 (testing
accuracy), 如图 1所示. 结果显示, 在训练损失和测试损失方面, 我们的 NAVAR算法随着训练轮数的增加损失值

迅速下降. 在准确率上, 我们的算法达到了更高的测试准确率, 证明了所提出方法的有效性.
接着, 在更为复杂的 CIFAR-100 数据集上训练 ResNet-34 网络 [29]. 该数据集包含 100 个类别的 60  000 张

32×32彩色图像, 其中 50 000张用于训练, 10 000张用于测试. 对于所有优化算法, 同样将批量大小设置为 256, 并
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训练了 200个周期 (epoch). 在图 2中, 分别绘制了训练损失、训练准确率、测试损失和测试准确率. 结果显示, 在

训练损失和测试损失方面, 我们的方法具有较快的下降速度, 在测试准确率上, 我们的 NAVAR算法最终相较于其

他算法取得了更高的测试准确率, 验证了所提出方法的有效性.
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图 1　不同随机优化算法在 CIFAR-10数据集上的表现
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图 2　不同随机优化算法在 CIFAR-100数据集上的表现 (续)
  

5.2   语言模型训练问题

除了图像分类任务外, 我们还对语言模型的训练任务进行了实验. 为此, 在常用的公开文本数据集WiKi-Text2[30]

上训练一个两层的 Transformer网络 [31]. WikiText2是WikiText-103数据集的子集, 主要用于测试小型数据集的语

言模型训练效果. 该数据集由约 10万个句子组成, 包含约 200万个词汇. 与其他数据集不同, WikiText2保留了原

始文本的丰富结构和标点符号, 适合用于研究语言模型的复杂性和生成质量. 而 Transformer网络则是自然语言处

理中的标准模型, 广泛应用于各种任务, 如机器翻译、文本生成、情感分析等. 在本次实验中, 我们使用 256维的

词嵌入, 设置了 512个隐藏层和 2个多头注意力机制. 在训练过程中, 所有优化算法的批量大小均设置为 20, 并进

行了 40个周期 (epoch)的训练. 为了减缓过拟合, 训练中的丢失率 (dropout rate)设置为 0.1. 图 3展示了模型的训

练损失 (training loss)、训练困惑度 (training perplexity)、测试损失 (testing loss)和测试困惑度 (testing perplexity).
结果显示, 在训练损失和训练困惑度上, 我们的方法具有更快的下降速度. 而在测试损失和测试困惑度上, 我们的

NAVAR算法在早期阶段相较于其他算法就展现出了较大优势, 且在最终阶段仍保持较低的测试损失和测试困惑

度, 证明了所提出算法的优越性.
综上所述, 我们在图像多分类任务和自然语言模型训练任务中对所提出的算法进行了测试, 并与其他相关算

法进行了对比. 在不同任务的 3个数据集上, 所提出的方法在训练数据集上均很快完成了收敛, 并且在测试数据集

上的表现优于其他相关算法, 证明了其具有较好的泛化性能. 总体而言, 所提出的自适应方差缩减算法在实际机器

学习问题上展现了有效性和优越性.
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6   总　结

O
(
T −1/3)

O
(
T −1/3)

方差缩减算法是随机优化方法中的一个重要分支, 通过设计具有方差缩减效应的梯度估计器, 可以实现最优

的   收敛速率. 本文针对传统方差缩减方法需要事先知道诸多问题参数 (如光滑系数、噪声方差、梯度上

界) 才能合理设置学习率和动量参数的局限性, 提出了一种能够自动调整这些超参数的自适应方差缩减算法. 首
先, 我们通过归一化方法对现有的方差缩减算法进行了修改, 使其仅需将学习率和动量参数设置为与迭代次数相

关的固定值, 并证明该算法具有最优的   收敛速率. 为了解决所提出算法需要事先知道迭代次数的限制, 我
们进一步提出了分阶段算法, 通过逐步增加每个阶段内的迭代次数, 使学习率和动量参数逐阶段下降. 通过这种方

式, 在无需预先确定迭代次数的情况下, 也能获得最优的收敛速率. 与现有的自适应方差缩减方法相比, 本文提出

的方法无需额外假设, 如梯度有界、函数值有界, 且不需要在首轮使用较大的批量大小. 此外, 本文获得的收敛速

率能够匹配理论下界, 不包含额外的对数项. 最后, 本文的证明方法简洁明了, 无需划分不同阶段分别约束不同项,
这有助于将该方法拓展至其他随机优化问题, 如双层优化 [32]、多层优化 [33]、内外耦合优化 [34]、最小-最大优化 [35]、

联邦学习 [36]等. 在数值实验方面, 我们在图像多分类任务和自然语言模型训练任务上进行了验证, 实验结果证明

了所提出算法的优越性.
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