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Normalized Adaptive Variance Reduction Method

JIANG Wei', YANG Si-Fan'?, WANG Yi-Bo'?, ZHANG Li-Jun'"?

'(State Key Laboratory for Novel Software Technology (Nanjing University), Nanjing 210023, China)
*(School of Artificial Intelligence, Nanjing University, Nanjing 210023, China)

Abstract: Stochastic optimization algorithms are recognized as essential for addressing large-scale data and complex models in machine
learning. Among these, variance reduction methods, such as the STORM algorithm, have gained attention for their ability to achieve
optimal convergence rates of O(7'/). However, traditional variance reduction methods typically depend on specific problem parameters
(e.g., the smoothness constant, noise variance, and gradient upper bound) for setting the learning rate and momentum, limiting their
practical applicability. To overcome this limitation, this study proposes an adaptive variance reduction method based on a normalization
technique, which eliminates the need for prior knowledge of problem parameters while maintaining optimal convergence rates. Compared
to existing adaptive variance reduction methods, the proposed approach offers several advantages: (1) no reliance on additional
assumptions, such as bounded gradients, bounded function values, or excessively large initial batch sizes; (2) the achievement of the
optimal convergence rate of O(7~'/?) without extra term of O(log7); (3) a concise and straightforward proof, facilitating extensions to
other stochastic optimization problems. The superiority of the proposed method is further validated through numerical experiments,
demonstrating enhanced performance when compared to other approaches.

Key words: stochastic optimization; non-convex optimization; adaptive algorithm; variance reduction; convergence analysis

« BEEUH: BER A AR S (62122037)
R [ : 2024-09-05; AU H]: 2024-11-13; SR A [H]: 2024-12-17; jos TELL AR [7]: 2025-04-18
CNKI M4 & K17 2025-04-21


mailto:zhanglj@lamda.nju.edu.cn
http://www.jos.org.cn/1000-9825/7383.htm
http://www.jos.org.cn/1000-9825/7383.htm
http://www.jos.org.cn/1000-9825/7383.htm
http://www.jos.org.cn/1000-9825/7383.htm
http://www.jos.org.cn/1000-9825/7383.htm
http://www.jos.org.cn/1000-9825/7383.htm
http://www.jos.org.cn/1000-9825/7383.htm
http://www.jos.org.cn/1000-9825/7383.htm
http://www.jos.org.cn/1000-9825/7383.htm
http://www.jos.org.cn/1000-9825/7383.htm
mailto:jos@iscas.ac.cn
https://doi.org/10.13328/j.cnki.jos.007383
https://cstr.cn/32375.14.jos.007383
http://www.jos.org.cn

4894 HAEFIR 2025 5% 36 B 11 4

a4y, BEALE AL B R BARH LS 25 > o AN T sl ) B 2 TR DR O & BE A 80RE0S KU it A B2 AL o
STREAL PPk i 1. A Gt A 7 ¥ A B e v O A A T B SRR e ) R, T BT Ay v A
UCIBAR A REALIE 33308 50 B AT TF 55, R BRI 1 H SR, bR 7 BRI Rad BE, AR DL AR AR 1) it rp A 1
3 PR,

FEG SBENLIRAL B rh P, 3144 2 — AR AR R B £ RY - R, HARZIRE)—/ME x e RUEATF HAR R
B f (o) FHER AT RE /D, HE2 B RPN

minf (x).
xeRd

TEVE R M, TN BRI TR0 AR R U S0 BT B S, B34 V£, 8, JUrh & AR PEAR A/ M
BREAS, (73 B[VAC,0] = VC). BHLOR AL I ECE L3825 31 b 32 47 6 D40 o, 6 i o5 51 vh, x 8% 20
iy

RS (N IR, & Ron— DMEHRFEA, f(x, &) RN AR RBUE, £ RS BRI 2k
k.

T30 8 MBI R AL B O, DI AE — SRS 00T, SRR 8 F 12 R/ ME P Re 2 NP AERY. ik, X8
1) 50 308 R O TR R f B — AN IR A, BRI R VF(x) = 0 1S SEAk, FRATNBRE AT BA UG 1AIAT 50 05 Ak 1) B AL
FE(BP—FiME 2, hAE B RESPHE B MRS LT, B 772 2 BEALES B T B (stochastic
gradient descent, SGD). SGD H Ll T LA N I AFAER — RINIER S x,, ..., x:

Xewt = X =1,V (%, §0),
o, & R NEER A0 R SR B REAR, T, RN ¢ ORI 5 ) 3. Y5 2] 3y, #5545 41, SGD HikRe
TRUE A PR AL xp R EIVF () lI] < O(T14), Hor T Rk AR 3P,

UEAER, AT i — B ER T BEHLAR MR AL il B P R R SIGE B, — RISk
LS SGD FER O(T-4) t— B4R FHE O(T-'7). 5 SGD 5EAF, 7 Z46 08 7 3 — 2 e AT
BEMLER FE V £(x,, &) BEAT BT, T R FH — 07 22 4 At v #85 SROB BR 2R BB B2, IR Tz Al iH 28 g As & DA
STORM (stochastic recursive momentum) %3 B9, FERIELARE (1= 0), BIEE LA v, = V£ (xo,&). TEREJ5 3%
R (12 1), BIEMEBRE AN THES v,

vi= =B +BVf(x36)+ (1 =B) (VI(x36) = Vf(x136)).

R AR IE GBI B 2 S 2, MBI ESH B, WHTR T, v, N THRZE E(|lv, - Vf (x,)||] REBEBER [A]Z
. TESRAGHE AL 1188 /5, STORM 5 vE R I T SGD Skt 77 AT B 3, Bl x,, = x, — v, SRTH, A
TSEBLERAR I O (T-17°) WSIGE 2, STORM J5 ik M INETH N B 2 51 % n, MZh =S4 8, B4R T Fx:

k
n= o Bi=cr,

[W+ZIIVf(x,;§,)|I2]

HA k=0(G*’L™"), w=0(G?), c=0(L?), H G NERE f HIBHE L5t L NEREL F MG REL 15 2, I EK
HT— R0 i) /S HORD T 5 BEATURR B 1) B TR RMB O, BETR E R AE MBS 8 G M L, T REIEM R E
SRS RSH, NSRS B ARSI . SR, 7E55br R, BAVR MRS AIE S5 G f L B, X HE
IRAE S BRI SR LA R,

N LR R R, WF T AT S R T ZE R AT TR U, B R T 7 T S 1) S R 1
DU, HIE R E SRR 2 A RS, R AR BE 08 KA AH B AU SICE SR AR R SR1M, 480 ik R —
SR PR (1) XL 75 0 F RO IR, BIAnBE B S U A BORIIRIEREE KB (2) BT A RE3kAE
O(T'"PlogT) HIW SR, ToVEVLEC SR KT O (T-'7) W SRR (3) J7iEMITE R AR A 52 44, 75 4 AN B 43 il
Xt 22 TN T REAT 4, ASH T4 B AR BEHLE Ak i 85 S, A SCEEF I — B AR, T R A i B E N
ZEARIR LIS, 3 1R R EL R I B ROR, TEE T S NEAMB R BB LT, 1% 5 RE e S IR K O (T7'73) W SIUH 2R,
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(1) $2tH T — PR BN 2 T 00— A B BO&E R 7 Z iR, R EE R  BOE N R B S, HAE S RS
ZHUXHA T EARREL, T7E M 5 H 5 TS0

(2) FETLFH I NBIME R (IR EEA 7 BRBUEA A RWIGEHEE RN BRSO T, A SCUERR 1 i th 300
Aefg S B LI O (T-17) RS %, JF B 45 A 530 T FAHILED. 72K | P aRATR L T A SO 4 i)
NAVAR (normalized adaptive variance reduction) 7725 WA 77 22 4R850 0] 1) 22 3¢

R 1 ANFETTEGRRE R

Jrik it T HIER BSME R
STORM" o(7-"1ogr) e BRREE TR, BB
STORM+” o(r-173) o BRI A 5, 8 A

META-STORM''" O(77"logT) £ R REAT 5
Ada-STORM!"" o(r-13) £ ORI R SNIN
NAVAR (43 o(r'7) = %

(3) i B SIS IR UE T AT iR BE A R, SRR 25 AR WY, 12 BRI TE 1 1 P T R S ) TR I B ER AR
USSR =, AT HA A DG Bk,

ASCER 1 NI ZEARIEAE ST B e B N R T LR, 28 2 IR T 5 ZE 4 ek a) B TSR R A
s 55 3 WITEA A T A SCER T I — A i B & BT 24007 1. 35 4 45 T TR SRR R B R o A
FEBA IR, 28 5 idd X SR IRI0IE T B4 H B BA R, 5 6 XA ST T 4.

1 #HxXxIME

AT T8 B 2H 7 ZE AR VAN B B B I AR A At e
L1 FEGRGZE

75 ZE SR ST RN AR AL 7] B R AR 2 T T2 B, 10798 B TR I D B AT R 22, B R T RIE I
SIGHRE . 7 2 A v (R A 2 d5e - mT LI 3 1) Roux 25 A U2 HE ) SAG (stochastic average gradient) 5i%, 1% 518 it
BRI R B R SE I 7 ZE AR BN, FETE 5 A PR Ak 1) R s T 2R M8l A T Al R AR D0 S
J HIBR 1), Tohnson 25 A TIAI Zhang 25 A U T SVRG (stochastic variance reduced gradient) 75, %75 i i i
JAYE S AL BB, AR T 5 SAG HVEA R A SGE . B S, Nguyen 25 A P H T SARAH (stochastic
recursive gradient algorithm) J57%, #F—0H& 5 7 eI N s B sud .

7EAE AL AT, Fang 25 A 142 1 SPIDER (stochastic path-integrated differential estimator) fiiit2%, ¥ BE#LIE
PYIRIR T ISR A SGD BLVER) O(T-14) 382 O (T-17), HAEF BRAI & TR ISR it — DI AZE O (' T '),
Horh, n AR A BR D ) b ) B OB 595, Wang 2 A TR K SpiderBoost I Prox-SpiderBoost 5% %}
SPIDER J7EREAT THRAL, R T RKIEHCP K, Ik K H T E S0 L S8, 1287732 1) L [ 6ot 2 1K
BT KA EREA, SR SLhR I B 7 SR AR . R DX — ) #, Cutkosky 25 N MBS 12 T3 T3 B
STORM J7¥, ZJ7 RS AE A MG R EAE A RSB0 T, SEIL O (T1PlogT) RN SIH 2.

1.2 BENEZE

FEBEHLAE M ARAK 1 A F, Ghadimi 25 N PHIERA 7@ 5k &3 112 2] %, SGD HIAREWS SLHL O (T-14) Ml sl
AR T2 R A T IERREOR B 15 2 2, S AR I T V2 25T 7 st BEALUER 5 348 R4 2 ) ZR W 7 vk,
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Tieleman % A U742 HY () RMSprop &9/ Kingma 25 A PR K Adam 83k, R T 3035 R S R kg, 7+
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2 FIERY SGD J7i2, AEASHIR BAK A S B 500 T, A0 RE DR AL B Wi SIod 2.

UEHER, HIE N Z 4T 15 AE LA TR 2 T )2 960, o i — AN E B R Levy A PEI NI
STORM (stochastic recursive momentum +) 7772, 1% J5 1%/ STORM BiE N —AS B &N IRAS, G885 2L At U 8L
R AR, STORM J7 VEMH T3 FE A SRR S A SR . A T g veix — PR, Lin 25 A U492 T META-
STORM-SG Al META-STORM 5%, Bk 14 bR EUEA A U, JHIERT TSR . SR, X w9 F 5 2475
SR BB A LI, 3F B IS R p 5 1 AN O (logT) I, K R ik B R A ILSGE 2. Frlr, Jiang £ A M
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2 SCHE FEBEHLAR AR Ak 1, TG A 22 R 75 S A A
338 1. T GHIE. B (OB 2 BEHLRRE G A P34 0 1, B
E[IIVf(x:6) = VI | < Lllx =P
% 2. B2 I BB OB B B AR R RS EOSTR B A it i, gt B B3R, 1
E[Vf(x:6)] = Vf () HE[IVf(x:6) - Vf W)IP| < 0.
% 3. MIthiR 7. f, = inff (x) > —co FH fF)—f <Ay, HH x VIR AL
B 17 22 400 S R0 R 8, ML S O (T-17°) WS S . B8 2 W01 T B BE SRR A AR 1 ELJ
52 A IR, TR 3 D000 T A KA IR K, T Bk 3 AMBEEE, BT 7 2007 v 5152 s 3
AR O (T-17°) W SIGH 6, 3¢ 2 A% SR FH 19 4 BB E. b, A T W AR 18 2 P BB FE 2 B IRft i 1 Y R, 3
TR PR R SRR 7 2. 20 SR [25) AR IELSRBEEAT T 5, R B REZE A FRUAT i) B o A5 B 1
b, TEAE AT A SO R LR A ] .
LA R R AL, A 0 15368 27 25 07 V300 3 T 7 A A M e bl B S0 B ML TR, B
3% 4. BRI S B3 IOBBBEBERLR LR B, B IV (56l <G
38 5. BRAIEAT 5. BB (RS BAT B, B max, e () — FO)I < B.
Levy A UHI L 977 OB 8 4 AVBESE S, Liu S8\ O H 10 S90005 0 75 BB 4E 4, T Jiang S5 N UV HY 1
77 5 B B AE A B 5 P AR K (03 K/, B Ah, 504 (9 STORM J7 vk L MO T 4. 15 LR B 2, ARSI
ITEAR L 4 SR 5.

3 ETHR—UHNBENHEEREREE

AT AR BRATTIR 10 B 3 N 77 ZE AR R 5 S R 1 I SIS A, FRATT2E T U7 ZE AR SR A STORM 4T
Bt BRI E, HAZ O AE T M 77 Z AR B LA T 85 v, 7255 1 2B (M1 1= 0), 2 vy = Vf(x0,&). TERESE
AL RE S (M) 2> 1), BREE Al 48 v, M

Ve = (=it + BV f(xi:6) + (1 = B) (Vf(x:6) =V f (xi-1:60)
o, g B ESHL ARZRIE N, I - vy + BV (5 &) A% G B TIE M H 75 3, TAA 51 N5 3
WL =B) (Vf(x3€) =V (xoy: £) B T RRZERERIEF, A 7 Z4R0s e THISCE R 1565 5 BIERET STORM
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() AR 7 VEAS ], £E SERTRA EERT, AT BT IR EER R LT SGD BT 7 X x,y = x, — v, MRS E T 1H—
A AR, AT A0 AR B T
Vi
Xivl =xr_77rm,

o, g, MR vl = 0 B, BATE v, /|vl = 0, BISEES 40 x, AT . shAb, A A+ Ja 5 o772 75 200
5312 A e SR T 0 SEBENURR 0 SR AR, AT T IE R TS B, 5y, AT E 480, REREy =
B, = T2 RIAT A5 S e (B8 ORI FRAT DK 2 I 574 44 8 NAVAR (normalized adaptive variance reduction)
T i, FANARRB a5 1 Fs.

3% 1. NAVAR &%,

BN BIEET;
B AL R x,.

l.forr=0to T -1 do
WEn =8=y=T"
if 1 =0 then
i vo =V f(x0,€0)3
else
T v = (=Bt + BV Fi36) + (1 =B (Vf(xi36) = V[ (xi136);
TR X1 = X =1
(vl
8. endif
9. end for
10. NV {1,2,..., T KA 7

11. return x,;

NN

TE28 4 i, BT I TR IO B 1 AR SETLRLAR 0 O (T1) WS, SATHT, BAASEVE 1 S i (il
SRR E SR GH RS (XS0 BB 05 T BB R A SRS T, A, TATT Bl bt
NS BV SR G BB BT 2, AR B B K NI, W28 kAN, JRAT R B A
VOB 240, JFAE SEHGERUR N T — /N B, R4 RSB I 28 B AR AL AR

TSR B T, TR 05 ¢, TR S BT BON S 1+ Lloge) MW BE, TG & %I B i%
ARVCHON T, = 2tomt | f5 5, HRAR 2 AR U, TRAAE 5 58 52 BN 10 ST R REN BB HON 1, = B, = T, AL IKRE I
Jrak, Bl 16 e e AR U T 19K/, TR, 2 5T SR 50 e 2 O AR B /M A 7R b RS, 1T L 25
BN BB INTTE S T W, 7555 4 50, TA TR %4 W B (0 5 (.

4 IBIRSHR

BTk, AT 1 HAT S AN0T. 7 2 A S RO 7 T R B FE (58 v, 10 1% 2 B 135 25
{86, 35— 1 R AT DA 31 B 1 etk

BITE 1. B 1 A AOBBIE IR v, R R AR 2> 1, A

Ellv,~ V)l < (1 =y + (o +L) V7.
AEB: B0, MR R AT v, 1O5E LR B, =y, M e > 1R, AT
V= V() = (=P v + 9V (6360 + (=P (VS (53 6) =V (x30) = Vf (x)
= (=) 0t =V ) +Y (VS (36D = VF G + (1= D) (VF(36) = VF (1:6) = VF i)+ f (x00)).



4898 HAEFIR 2025 5% 36 B 11 4

A LA ST HE— S AR, TATT LA B
vi=Vf(x) ==y (o= Vf(x)+ 72;1 1=y (Vf(x: €)=V f (x))
Y A=) T F 3 6) — V(e 6) + Y (i) = VF ().
RSB I B L SEHOFRUNE, £t
Bl = V7 )l < (=9 Bl - VF G+ 9E|| 3 (1 =9z - Vo) |

+B|| X = T i) =V f i)+ V) - V)|
B FAER BN &= X, 2 A% EX)’ <E[X?], B EX < VE[X?], ATl LA SEA (1):

Bl ~¥£ ()l < (=3B lIvo- Tl + 3 B[S0 -9 Ozt -vr o]

+ \/E[”Z;](l TS (6= VS () + VS () -V )| ()

B ) (1= (Vi) - V)

=0, TATATH ALK (2):

2|3 - e -V |=B[Y A= s e -V ]
< 0-222:1(1 -y < %2_)/)2 < 0-72 (2
IS B E| ) (1= 7V f ki) = VG 36+ V(i) = V)| = 0, RATT AR B
B[ -9 - V) + V) - Vo) |
=E [Z;l(l _7)2(r+l_i)(vf(xi§§i) =V &)+ V(i) - Vf(xi))z]
<B[Y (=) V) = VSR | < 3 =y =

. 1 1
= [22 ! 1 =) 20410 12,2 <I[y— =2 3
7§i:]( ) YiTaoyy SEry kY 3
Hop, A0 (1) oL FE A

EIZ (1- y)Z(HFl‘)(Vf(xi;é:i) =V (xi:E) +Vf(xio) - Vf(x[))z}

i=1

<E Z (1 _'Y)Z(t+]7i)((vf(xi;§i) =V f(xio §§i))2 +2(Vf(xi:6) =V (xi36), V(i) = V) + (Vf(xim) = Vf(xi))z)
L'i=1

<E Z A=)V f(x36) =V f(xi13:6))" = (Vf (xi) = V f (x,-))z)]
L i=1

L i=1

<B| (=9 UV f(xi56) = Vf (i ;5,-»2] :
FAR (2) AT 3) RAAT (1) o, 2R 4 5

2
E[llvi=VF Gl < A=y)E[llvo = Vf (o)1 +y 0-7 + YLy <(A-y)o+(oc+L)y.
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MRAESIBE 1, FRATAT LA RN, B6 EEAG TH & ARk T 1R 22 S BEIN [H 320 )8/, R B T7 Z 4 RS k. P, M o
B G E LR A& x, B SER J5 3K, BATAT LA H DA 51 2L

SIEE 2. % T IEAREE R x,, H L

1 L
IVf el < - (f(x,) =) + 21V () —will + 7?

WEEA: 1o, ORI f A& L-GIE M (*Eﬁﬁxu 1), ®AIA:
F () < £+ V() 51 =5 + 5 b = 3

TSR 500 = =, 51 =y, RS BT S
f(-xt+l)<f(xr)+<vf(xr 7m> %72'
S A A 1 y<vf : ”>Iﬁ E AT
v, L L
f(x,+1)<f(x,)+<Vf(x,) v ”> < ”V”> L < AT =l il + 2

T3 B TP AN S 2 A2 R B DA IE PR 4y, A4S
lvl < %(f(xf) =S +IVFG) = will + %
Ba, BT IVAGON < IVF @) =il + [Ivill, FATTBESS 52 BB 22 B IE I -
VSO <INV () = vill + il < %(f(xr)—f(xt+1))+2||Vf(x,)—v,|| + %L

JEHE.
FRAE S FE 1 A0 5] R 2, FAITAT LAFS H DL R 2 FE.
EIE 1 5T F5EIE 1 RS R v, Hie:

E[IV/ ol <

8|2 I »n] ERAAE
EO: B2, W3 2, SR

B[ Vs @l < E[l @)~ f G +2Y . 9f )= vil+ VLTT]
5 LIRS RPTI FI B DAIEH T, R4S B 1 D y = T2, ATLAA 51

L
E[;Zt:lnwwu] <E[7—T(f(x1)—f(xr+l))+ = Vs -vil+ 2

1 2 2 L
S FU =P+ EY A=yer g3 (@D vy I

As 200 2(c+L) L

< - 4
= T3 + T3 + T3 + 2723

s 20 yL
—+—+4+2(c+L +—=
SRR W+
_As+d4o+2L L A;+40+3L
- T3 T2 T3

A, BT R MNEE (1,2, T) TEEHURAEAS 210, FATR R0

1 T
72 V@l <

Ar+40+3L

E[llVf(x,)Il] <E T3
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HEEE.

FRYEE 1, FATT AR50, AR IMEE 1 B O(T-17°) MR SUE S, 54T irism L, 892 1 MKk
TR A R R B A R (BRI 4 AR S), A TR BEIEYILREE A8 R = K. Frsk1g i
WSO AR S RSN O (logT) T, e B VT ECRAMLAE D AR Ak i S pR B8 T 7.

BRI 1 Relig AT et IR OREE, (B HATIAR RR BB S ATE A AR T 8 T RO — I, JRATESS 3715
SN T B BB, BT ORIRANES Bz R W Sk PR .

EIR 2. 6T M BERVE R 45 R &, A R AR AR EECh T, W L
_ 43 (A;+40+3L)

E[lVf @] < VTR
UE R WL R G — N R BN AR S AN B BT K ANBY B s ik AR O 2 A
20420 . 425 < 2K,

FrUd, &3t T WERE, BIEZE DA T logT MHEL. BFUENEE k ANBYBIIEARIRECH 241, BT A — M B,
PIEARIRECR 2™ = T/2. BB EITRAT R R 5B B th 45 5, RIS = [logT |, M BUIE kB = DR T/4.
MRAE BB 1 AT A, 20 T UGG, 52 i % H 45 L 2 -

E[IIVf Gl <

T2, LR ECN T/4 B, BATAT LA (R

A;+40+3L
T3

Ap+4a+3L 4P (A +40+3L)

E[”Vf(x)”] < (T/4)]/3 - T3

.

A5 5 2 B, AT FSGT AU T ORI A B S I AR VOB BT, TRAOVAR
REARIBROLI O (717°) ISR 3. 55005 | oh 3 5 AR B HOR R AR, 2R, 351 A3 i 5 4
HEBE BRI B T .

5 SRS

FEAST HR, 38 o HAE S0 50 0F BT 4R H 5 i A e JRANITE BB 22 0 AT 45 FE 5 AL 20T 45 Fadb AT s,
I 5 R AIRALTIFREAT X . AR &, 1 5ext b T8 AR SGD &34 P, Adam %3k PURT AdaBelief 512 % i
JERFEL T 7 Z ARSI STORM™ [ 3 (38 N 48 4, {45 STORM ™', META-STORM""f1 Ada-STORM'"!, 7582
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