jiangwei.jpg 



Wei Jiang (姜伟)  
Professor
School of Computer Science and Engineering
Nanjing University of Science and Technology, Nanjing, China

Google Scholar
Email: jiangw@lamda.nju.edu.cn;   jiang_wei@njust.edu.cn
[Chinese version]


Research Interests

      Machine Learning, Stochastic Optimization.

Working Experiences

Education Experiences

Selected Papers (Publications by Year)

  1. Optimizing Unnormalized Statistical Models through Compositional Optimization
    W. Jiang, J. Qin, L. Wu, C. Chen, T. Yang, and L. Zhang
    IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), to appear, 2025.

  2. Revisiting Stochastic Multi-Level Compositional Optimization [PDF]
    W. Jiang, S. Yang, Y. Wang, T. Yang, and L. Zhang
    IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 47(7): 5613 - 5624, 2025.

  3. Normalized Adaptive Variance Reduction Method [PDF]
    W. Jiang, S. Yang, Y. Wang, and L. Zhang
    Journal of Software, 36(11): 4893 - 4905, 2025.

  4. Adaptive Variance Reduction for Stochastic Optimization under Weaker Assumptions [PDF]
    W. Jiang, S. Yang, Y. Wang, and L. Zhang
    In Advances in Neural Information Processing Systems 37 (NeurIPS 2024), pages 22047 - 22080, 2024.

  5. Efficient Sign-Based Optimization: Accelerating Convergence via Variance Reduction [PDF]
    W. Jiang, S. Yang, W. Yang, and L. Zhang
    In Advances in Neural Information Processing Systems 37 (NeurIPS 2024), pages 33891 - 33932, 2024.

  6. Projection-Free Variance Reduction Methods for Stochastic Constrained Multi-Level Compositional Optimization [PDF]
    W. Jiang, S. Yang, W. Yang, Y. Wang, Y. Wan, and L. Zhang
    In Proceedings of the 41st International Conference on Machine Learning (ICML 2024), pages 21962 - 21987, 2024.

  7. Learning Unnormalized Statistical Models via Compositional Optimization [PDF]
    W. Jiang, J. Qin, L. Wu, C. Chen, T. Yang, L. Zhang
    In Proceedings of the 40th International Conference on Machine Learning (ICML 2023), pages 15105 - 15124, 2023.

  8. Multi-block-Single-probe Variance Reduced Estimator for Coupled Compositional Optimization [PDF, Supplementary]
    W. Jiang, G. Li, Y. Wang, L. Zhang, and T. Yang
    In Advances in Neural Information Processing Systems 35 (NeurIPS 2022), pages 32499 - 32511, 2022.

  9. Optimal Algorithms for Stochastic Multi-Level Compositional Optimization [PDF]
    W. Jiang, B. Wang, Y. Wang, L. Zhang, and T. Yang
    In Proceedings of the 39th International Conference on Machine Learning (ICML 2022), pages 10195 - 10216, 2022.

Honors and Awards

Foundation

Distributed Optimization of Compositional Loss Functions. Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX24_0231) 2024.05-2025.05

Academic Service